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SUMMARY

Telomere synthesis in cancer cells and stem cells
involves trafficking of telomerase to Cajal bodies,
and telomerase is thought to be recruited to telo-
meres through interactions with telomere-binding
proteins. Here, we show that the OB-fold domain
of the telomere-binding protein TPP1 recruits telo-
merase to telomeres through an association with
the telomerase reverse transcriptase TERT. When
tethered away from telomeres and other telomere-
binding proteins, the TPP1 OB-fold domain is suffi-
cient to recruit telomerase to a heterologous
chromatin locus. Expression of a minimal TPP1 OB-
fold inhibits telomere maintenance by blocking
access of telomerase to its cognate binding site
at telomeres. We identify amino acids required for
the TPP1-telomerase interaction, including specific
loop residues within the TPP1 OB-fold domain and
individual residues within TERT, some of which are
mutated in a subset of pulmonary fibrosis patients.
These data define a potential interface for telome-
rase-TPP1 interaction required for telomere mainte-
nance and implicate defective telomerase recruit-
ment in telomerase-related disease.

INTRODUCTION

The addition of telomere repeats to chromosome ends by the

enzyme telomerase is essential to counter the incomplete

replication of telomeres that occurs with cell division in stem

cells and in cancer cells (Cech, 2004; Palm and de Lange,

2008; Artandi and DePinho, 2010; O’Sullivan and Karlseder,

2010). Disruption of this process by mutations in telomerase

components causes stem cell dysfunction and results in a

number of diseases in humans, including dyskeratosis conge-

nita, aplastic anemia, pulmonary fibrosis, and multiple types of
cancer (Savage and Alter, 2008; Calado and Young, 2009).

Human telomerase consists of a minimal catalytic core, includ-

ing the reverse transcriptase subunit TERT and the telomerase

RNA component TERC, which are assembled into a mature

enzyme along with additional holoenzyme proteins (Collins,

2008). To elongate telomeres, telomerase is thought to be

recruited to chromosome ends through interactions with telo-

mere-binding proteins, but the precise mechanisms of telome-

rase recruitment remain incompletely understood.

Telomerase undergoes a highly orchestrated process of

assembly and trafficking within the nucleus of human cells.

TERC encodes the template for the reverse transcription reac-

tion in telomere addition but also serves as the central scaffold

for assembly of the telomerase ribonucleoprotein (RNP) (Cech,

2004; Zappulla andCech, 2006; Egan andCollins, 2012). A newly

transcribed TERC RNA molecule is bound and stabilized by the

dyskerin core complex, which includes dyskerin, NHP2, and

NOP10 (Darzacq et al., 2006). Loading of TERT into telomerase

complexes generates an enzymatically active RNP, but this

complex is unable to act on telomeres without completing

additional trafficking and assembly steps in vivo. In human

cancer cells and embryonic stem cells, telomerase localizes

within Cajal bodies, which are nuclear sites of RNP modification

and assembly (Gall, 2000; Jády et al., 2004; Zhu et al., 2004;

Batista et al., 2011). RNA fluorescence in situ hybridization

(FISH) studies using probes specific for TERC revealed that

telomerase-containing Cajal bodies associated with a subset

of telomeres specifically in S phase of the cell cycle (Jády

et al., 2004; Zhu et al., 2004; Tomlinson et al., 2008). Concentra-

tion of telomerase within Cajal bodies depends upon an interac-

tion between the CAB box motif within TERC and TCAB1, which

is a WD40 repeat protein that is part of the active telomerase

holoenzyme (Cristofari et al., 2007; Tycowski et al., 2009; Ven-

teicher et al., 2009). TCAB1 is required for telomere maintenance

and is mutated in an autosomal-recessive form of dyskeratosis

congenita (Venteicher et al., 2009; Zhong et al., 2011). Loss of

TCAB1 function causes mislocalization of telomerase from

Cajal bodies to nucleoli, cripples the ability of telomerase to

maintain telomeres, and impairs recruitment of telomerase to
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chromosome ends (Venteicher et al., 2009; Batista et al., 2011;

Zhong et al., 2011; Stern et al., 2012). Depletion of the Cajal

body scaffold coilin also blunts the ability of telomerase RNA

to associate with telomeres, suggesting that Cajal bodies may

be important for recruiting telomerase to telomeres (Stern

et al., 2012).

In yeast, the telomere-binding protein Cdc13p positively

regulates telomerase recruitment through an interaction with

the telomerase component Est1p (Pennock et al., 2001; Taggart

et al., 2002; Chan et al., 2008). In human cells, telomere-binding

proteins exert both positive and negative effects on telomerase

function. Human telomeres consist of long tracks of double-

stranded repeats ending in a single-stranded overhang. Telo-

meric DNA repeats are bound by the six-protein shelterin

complex (Smogorzewska and de Lange, 2004; de Lange,

2005; Verdun and Karlseder, 2007; Xin et al., 2008; O’Sullivan

and Karlseder, 2010). TRF1 and TRF2, factors that bind

double-stranded telomere repeats, inhibit telomerase function

presumably by transducing telomere length information to

the chromosome terminus (Smogorzewska et al., 2000). The

single-stranded overhang is bound by a subcomplex of shelterin

components in which POT1 directly contacts DNA and TPP1

bridges POT1 to TIN2, which connects to the TRF1-TRF2

double-stranded DNA-binding complex. Depletion of POT1 or

TPP1 or overexpression of a POT1 variant with a deletion in

the DNA-binding domain (POT1DOB) each leads to telomere

elongation by telomerase, indicating that POT1 and TPP1

prevent telomerase action at telomeres (Loayza and De Lange,

2003; Ye and de Lange, 2004; Ye et al., 2004). In contrast to

these genetic findings in cultured cells, biochemical studies

in vitro have established that recombinant TPP1 and POT1

enhance processivity of telomerase on oligonucleotide sub-

strates, suggesting that TPP1 and POT1 act as positive cofac-

tors in telomerase catalysis (Wang et al., 2007; Zaug et al.,

2010). These dual functions of the TPP1-POT1 complex in regu-

lating telomerase function remain to be resolved.

Experiments designed to address telomerase recruitment in

human cells have exploited ‘‘supertelomerase’’ (S-T) cells, which

are cancer cells in which both TERT and TERC are overex-

pressed to enable telomerase detection at telomeres (Cristofari

and Lingner, 2006; Cristofari et al., 2007; Abreu et al., 2010).

Loss-of-function studies showed that TPP1 and TIN2 were

required for efficient recruitment of telomerase to telomeres in

S-T cells (Abreu et al., 2010). TERT has been shown to interact

with the oligonucleotide/oligosaccharide-binding (OB)-fold of

TPP1 (Xin et al., 2007), and this same domain of TPP1 was

implicated in recruiting telomerase to telomeres in S-T cells

(Abreu et al., 2010). However, TPP1 serves to tether POT1 to

telomeres; therefore, inhibition of TPP1 leads to loss of the

TPP1-POT1 complex from telomeres and the induction of

a DNA damage response at telomeres (Houghtaling et al.,

2004; Liu et al., 2004; Ye et al., 2004; Kibe et al., 2010; Tejera

et al., 2010; Takai et al., 2011). In addition, loss of TPP1 in vivo

is accompanied by reduced levels of TIN2 (Rai et al., 2011), sug-

gesting that TPP1 might serve a structural role in the shelterin

complex. Therefore, separating the putative recruitment func-

tion of TPP1 from its end-protection function is inherently

challenging.
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In this study, we investigate mechanisms of telomerase

recruitment to telomeres in human cancer cells. We find that

the OB-fold domain of TPP1 recruits telomerase to telomeres

and that this is an essential step in telomere maintenance. We

identify a putative interaction surface governing this interaction

and show that this binding region is mutated in a subset of

patients with diseases caused by telomerase mutations.

RESULTS

Neo-Cajal Bodies Form at Telomeres
in Supertelomerase Cells
To investigate telomerase recruitment, we employed a modified

S-T assay that uses transient, plasmid-based expression to

overcome inherent limitations in expressing TERC from a retro-

virus (Figures S1A–S1C available online). Elevated expression of

TERC, together with hemagglutinin (HA)-tagged TERT, resulted

in uniform colocalization of telomerase with telomeres by RNA

FISH and by immunostaining with an anti-HA antibody, respec-

tively (Figures 1A and 1B). In the absence of coexpressed

TERC, HA-TERT was detected by immunofluorescence in a

nucleoplasmic pattern. When transfected alone in cells lacking

overexpressed TERT, transient TERC was found in Cajal bodies

and rarely colocalized with telomeres (Figure S1D). To investi-

gate whether other telomerase holoenzyme components were

also found at telomeres, we performed immunofluorescence

for dyskerin and TCAB1. Dyskerin and TCAB1 efficiently colo-

calized with telomeres in S-T cells but showed minimal overlap

with telomeres in cells expressing HA-TERT alone, where they

accumulated in their typical nuclear compartments, nucleoli

and Cajal bodies, respectively (Figures 1C and 1D). Taken

together, these results indicate that telomerase foci at telo-

meres in S-T cells contain the entire holoenzyme.

The striking localization of telomerase holoenzyme compo-

nents to telomeric foci in S-T cells suggested the possibility

that Cajal bodies were forming de novo at telomeres. To test

this idea, we stained for telomeric DNA and for coilin, an estab-

lished marker of Cajal bodies. Remarkably, we found colocaliza-

tion of coilin at most telomeres in S-T cells, whereas in control

cells, coilin was detected in classical Cajal bodies that typically

did not colocalize with telomeres (Figure 1E). The number of total

Cajal bodies in S-T cells (17.5 ± 5.5 per nucleus, n = 75) far ex-

ceeded that of cells expressing HA-TERT alone (3.0 ± 1.5 per

nucleus, n = 150, p < 0.001 by Fisher’s exact test) (Figure 1E),

suggesting that telomerase overexpression results in ‘‘neo-Cajal

bodies’’ at telomeres and that these new foci may contain other

Cajal body components. To test this hypothesis, we stained S-T

cells for other well-characterized Cajal body components,

including the small Cajal-body-specific RNA (scaRNA) U85, fi-

brillarin, and SMN, which do not participate in telomerase func-

tion. In control cells expressing HA-TERT alone, scaRNA U85

was detected exclusively in three to five strong nuclear foci by

RNA FISH, which is consistent with its Cajal body localization

(Figure 1F, top); fibrillarin was found in both Cajal bodies and

the nucleolus, which is consistent with its role in modification

of splicing RNAs and ribosomal RNA (rRNAs) (Figure 1G, top);

and SMNprotein was detected primarily in 3–10 foci per nucleus,

which is consistent with its localization in both nuclear gems and



A

B

C

E

F

H

G

D

MergeDAPI
IF: 

dyskerin

MergeDAPI
IF: 

TCAB1

HA-TERT
only

S-T

HA-TERT
only

S-T

HA-TERT
only

S-T

HA-TERT
only

S-T

HA-TERT
only

S-T

IF:TRF2 MergeDAPI
FISH :
TERC

FISH:
telomeres

FISH:
telomeres

FISH:
telomeres

FISH:
telomeres

FISH:
telomeres

MergeDAPI
IF: 

HA-TERT

Telomerase holoenzyme
 components

IF:SMN Merge

MergeDAPI

DAPI

IF: 
fibrillarin

IF:SMN

IF: 
fibrillarin

FISH:
telomeres MergeDAPI

IF: 
coilin

IF:TRF2 MergeDAPI
FISH:
U85

g

HA-TERT
only

S-T

HA-TERT
only

S-T

HA-TERT
only

S-T

*

Cajal body
components

Figure 1. Telomerase Holoenzyme Compo-

nents at Telomeres and Formation of Neo-

Cajal Bodies in S-T Cells

HeLa cells transduced with an HA-TERT retrovirus

were transfected with a TERC expression plasmid

(S-T, supertelomerase) or empty vector (HA-TERT

only).

(A–D) Immunofluorescence or FISH for telomerase

components and telomeres using (A) anti-HA

antibody (red), DNA FISH for telomeres (green); (B)

RNA FISH for TERC (red), anti-TRF2 antibody

(green), asterisk indicates longer exposure; (C)

anti-dyskerin antibody (red), DNA FISH for telo-

meres (green); and (D) anti-TCAB1 antibodies

(red), DNA FISH for telomeres (green).

(E–H) Immunofluorescence or FISH for Cajal body

components and telomeres using (E) anti-coilin

antibody (red), DNA FISH for telomeres (green); (F)

RNA FISH for U85 (red), anti-TRF2 antibody

(green); (G) anti-fibrillarin antibody (red), DNA FISH

for telomeres (green); (H) anti-SMN antibodies

(red), DNA FISH for telomeres (green).

See also Figure S1.
Cajal bodies (Figure 1H, top). In contrast, scaRNAU85, fibrillarin,

and SMN were each readily detected at telomeres in S-T cells

(Figures 1F–1H, bottom), indicating that the foci at telomeres in

S-T cells resemble bona fide Cajal bodies and that overexpres-

sion of telomerase forms neo-Cajal bodies at telomeres.

Depletion of TIN2 or TPP1 Stalls Telomerase
Recruitment in Conventional Cajal Bodies
To understand the requirements for formation of telomerase foci

at telomeres, we depleted proteins implicated in telomerase

recruitment to telomeres with short interfering RNAs (siRNAs).

Dyskerin depletion led to a loss of TERC (Figure 2A) and elimi-

nated TERT foci at telomeres in S-T cells, which is consistent

with a requirement for TERC in telomerase recruitment to

telomeres (Figure 2B, middle). Depletion of TCAB1 efficiently

diminished the number of telomerase foci at telomeres and

caused HA-TERT to mislocalize to nucleoli (Figures 2A and 2B,

bottom). Some HA-TERT foci persisted at telomeres in

siTCAB1-treated cells (Figure 2G; 17.6 ± 0.8 in control siRNA-

treated cells versus 5.8 ± 0.6 in siTCAB1-treated cells, p <

0.0001 by Fisher’s exact test), which is likely due to incomplete

depletion of the protein (data not shown). These results indicate

that TCAB1 is needed for efficient recruitment to telomeres,
Cell 150, 481–49
which is consistent with previous studies

showing a requirement for TCAB1 in

localization of endogenous TERC to telo-

meres (Figure S2A) (Venteicher et al.,

2009; Stern et al., 2012). To determine

whether Cajal bodies themselves are

required for telomerase recruitment, we

treated cells with coilin siRNA, which effi-

ciently depleted coilin protein by western

blot (Figure 2C) and resulted in loss of coi-

lin-positive Cajal bodies in both HeLa

cells and S-T cells (Figures 2D and 2E).
Coilin depletion eliminated HA-TERT foci at telomeres in S-T

cells (Figure 2D) without affecting HA-TERT protein levels or telo-

merase activity (Figures 2C, S2B, and S2C). These data show

that coilin, which serves as a scaffold for assembly of Cajal

bodies, is required for formation of telomerase foci at telomeres

in S-T cells.

To understand the determinants at telomeres that control

formation of telomerase foci, we used RNA interference to

deplete TIN2 or TPP1, each of which had been implicated in

telomerase recruitment (Abreu et al., 2010). Treatment of S-T

cells with siRNAs against TIN2 or TPP1 efficiently depleted

each protein (Figure 2F), which compromised telomere end

protection, resulting in 53BP1-positive DNA damage foci at

telomeres (Takai et al., 2003) (Figure S3). Loss of TIN2, but not

TPP1, led to reduced TRF2 protein at telomeres, which is con-

sistent with the role of TIN2 as a core shelterin component

(Figure 2I) (de Lange, 2005; Takai et al., 2011). In agreement

with previous work, depletion of either TIN2 or TPP1 resulted in

a loss of HA-TERT foci colocalizing with telomeres (Figures 2G

and 2H) (Abreu et al., 2010). Interestingly, instead of colocalizing

with telomeres, HA-TERT was detected in a small number of

bright foci that also stained positive for coilin in cells treated

with siRNA against either TIN2 or TPP1 (2.5 ± 0.2 and 7.0 ± 0.4
4, August 3, 2012 ª2012 Elsevier Inc. 483
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Figure 2. Depletion of TIN2 or TPP1 Stalls Telomerase Recruitment in Conventional Cajal Bodies

(A)Western blot for TCAB1 and dyskerin in S-T HeLa cells treatedwith siRNAs indicated (top). Northern blot for TERC (bottom). U4 andU6RNAs, loading controls.

(B) S-T HeLa cells were transfected with siRNAs indicated, followed by immunofluorescence using anti-HA antibody (red) and anti-TRF2 antibody (green).

(C) Western blot for HA-TERT and coilin in S-T cells treated with siRNAs indicated. Tubulin, loading control.

(D) S-T HeLa cells were transfected with coilin siRNAs, followed by immunofluorescence using antibodies against coilin (white), HA-TERT (red), and TRF2 (green).

(E) Quantification of (B) and (D), >100 nuclei were scored for number of HA-TERT foci at telomeres. Error bars represent SEM; p < 0.005 by Student’s t test.

(F) Western blot for TIN2 and TPP1 in S-T HeLa cells treated with indicated siRNAs. Nonspecific bands, loading controls.

(G) S-T HeLa cells were transfected with TIN2 or TPP1 siRNAs, followed by immunofluorescence using antibodies against HA-TERT (red) and DNA-FISH with

a telomere probe (green).

(H) Quantification of (G), >100 nuclei were scored for the number of HA-TERT foci at telomeres. Error bars represent SEM; p < 0.005 by Student’s t test.

(I) S-T HeLa cells were transfected with TIN2 siRNAs, followed by immunofluorescence using antibodies against coilin (white), HA-TERT (red), and TRF2 (green).

See also Figures S2 and S3.
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(A) Tethering system uses TPP1 variants fused with an HA-mCherry-lacI tag transfected in cells containing an integrated lacO array.

(B) U2OS2-6-3 cells transfected with HA-mCherry-lacI-tagged TPP1 variants were stained for HA (red), followed by telomere-FISH (green).

(C) U2OS2-6-3 cells transfected with FLAG-TERT, TERC, and indicated HA-mCherry-lacI-tagged TPP1 variants were analyzed for TPP1 by mCherry epifluor-

escence (red) and for TERT by immunofluorescence with anti-FLAG (green).
per nucleus for siTIN2 and siTPP1, respectively, versus 22.4 ±

0.8 in control-treated cells) (Figures 2G–2I). The number and

morphology of these foci were indistinguishable from Cajal

bodies in control HeLa cells (data not shown), indicating that

loss of TIN2 or TPP1 arrests telomerase in Cajal bodies.

A Tethered TPP1 OB-Fold Domain Recruits Telomerase
to a Nontelomeric Chromatin Locus
Studying telomerase recruitment by using loss-of-function

approaches is limited by the following: (1) the interdependence

of many shelterin components for optimal accumulation (Rai

et al., 2011; Takai et al., 2011) and (2) the fact that perturbing

shelterin proteins induces a DNA damage response at telo-

meres, which could in turn affect recruitment of telomerase. To

test potential interactions between telomerase and candidate in-

teracting partners outside the context of both the shelterin

complex and telomeric DNA, we employed a tethering strategy

that allows the expression of a lacI fusion protein ‘‘bait’’ to be

visualized as a strong single nuclear focus at a multimerized

lacO array stably integrated into a single genomic locus in

U2OS2-6-3 cells (Janicki et al., 2004) (Figure 3A). We used this

approach to study potential interactions between telomerase

and TPP1 at a heterologous chromatin site and in isolation

from the effects of DNA damage responses at uncapped telo-

meres. Whereas HA-lacI-mCherry localized only in a single

lacO array focus in the nucleus, the HA-lacI-mCherry-TPP1
fusion protein localized both to the lacO array and to telomeres,

indicating that the TPP1 fusion protein retains the ability to be

incorporated into the shelterin complex at telomeres (Figure 3B,

first and second row). In addition, telomere signals were readily

detected within the HA-lacI-mCherry-TPP1 focus at the lacO

array by using a telomere FISH probe, indicating that the immo-

bilized TPP1 fusion protein recruits telomeres to the lacO focus.

In U2OS2-6-3 cells cotransfected with the HA-lacI-mCherry tag,

Flag-TERT and TERC, HA-lacI-mCherry remained in a single

lacO array focus and did not interfere with the ability of telome-

rase to localize to telomeres (Figure 3C, first row; data not

shown). In contrast, in cells expressing HA-lacI-mCherry-TPP1,

FLAG-TERT localization to telomeres was diminished, and

instead, FLAG-TERT was detected, together with HA-lacI-

mCherry-TPP1, in the lacO array focus (Figure 3C, second

row). In this setting, HA-lacI-mCherry-lacI-TPP1 acted as

a sink to preferentially recruit telomerase to the lacO array, effec-

tively competing for telomerase-binding sites at telomeres.

To determine whether the OB-fold of TPP1, previously

implicated in binding TERT (Xin et al., 2007; Abreu et al., 2010),

mediated recruitment of telomerase to the lacO array, we

constructed a fusion protein lacking the OB-fold (HA-lacI-

mCherry-TPP1DOB) and a minimal fusion protein comprising

only the OB-fold of TPP1 (amino acids 87–250) (HA-lacI-

mCherry-TPP1OB). HA-lacI-mCherry-TPP1DOB localized to

the lacO array and to telomeres (Figure 3B, third row) but was
Cell 150, 481–494, August 3, 2012 ª2012 Elsevier Inc. 485



unable to recruit telomerase to the lacO array and could no

longer compete telomerase away from telomeres (Figure 3C,

third row). Conversely, HA-lacI-mCherry-TPP1OB, which local-

ized only to the lacO array (Figure 3B, bottom row), effectively re-

cruited FLAG-TERT to the lacO array and blocked telomerase

binding to telomeres (Figure 3C, bottom row). Importantly, telo-

meres were not detected at the lacO focus in cells expressing

HA-lacI-mCherry-TPP1OB (Figure 3B, bottom row), indicating

that HA-lacI-mCherry-TPP1OB likely recruited telomerase in

the absence of other shelterin components. Taken together,

these results show that the OB-fold domain of TPP1, when iso-

lated from telomeric DNA and other shelterin components, is

necessary and sufficient to recruit telomerase to a heterologous

chromatin locus.

Specific Loop Residues within the TPP1 OB-Fold
Mediate Recruitment of Telomerase to Telomeres
To further understand the interaction between telomerase and

the TPP1 OB-fold domain, we tested whether overexpressed

TPP1 OB-fold could effectively compete with endogenous

TPP1 for telomerase binding. Because TPP1-OB lacks the ability

to be incorporated into the shelterin complex at telomeres, we

reasoned that an isolated and untethered TPP1-OB would

sequester telomerase away from telomeres in a dominant-

negative manner. To investigate this hypothesis, we developed

a ‘‘competitive sequestration’’ assay. Specifically, mCherry-

tagged TPP1 OB-fold was cotransfected along with green

fluorescent protein (GFP)-TERT and TERC in HeLa cells (Figures

4A–4C). Similar to S-T cells described above, GFP-TERT

localized to telomeres in the presence of TERC (Figure 4C, top

row). In contrast to the mCherry vector, expression of mCherry-

TPP1 OB (mCherry-OB) abolished localization of GFP-TERT

to telomeres and caused GFP-TERT to be sequestered within

conventional Cajal bodies (Figure 4C, middle row), which are

results reminiscent of TPP1 depletion in S-T HeLa cells (Fig-

ure 2G). Unexpectedly, mCherry-OB itself strongly accumulated

within Cajal bodies together with GFP-TERT, indicating that

a telomerase-mCherry-OB complex was sequestered in Cajal

bodies. Localization of mCherry-OB in Cajal bodies was not

observed without coexpressed TERT and TERC. Taken

together, we conclude that overexpressed TPP1 OB-fold acts

as a competitive inhibitor of telomerase recruitment, presumably

by blocking an interacting surface on telomerase that is engaged

by endogenous TPP1 during normal telomerase action at telo-

meres. These results further support the necessity and suffi-

ciency of TPP1-OB in recruiting telomerase from Cajal bodies

to telomeres.

The structure of the TPP1 OB-fold domain is closely related

to the structure of certain OB-folds in telomere-associated or

telomerase-associated proteins from other species (Wang

et al., 2007; Xin et al., 2007). In Saccharomyces cerevisiae and

Candida albicans, Est3 is a telomerase-associated cofactor

whose OB-fold shows structural similarity to TPP1 OB-fold

whenmodeled using structure prediction algorithms. Sequences

within Est3 that are responsible for binding yeast telomerase

have been identified using functional and biochemical assays

(Lee et al., 2008; Yu et al., 2008). Using structure-guided

mutagenesis, we sought to identify specific amino acids in the
486 Cell 150, 481–494, August 3, 2012 ª2012 Elsevier Inc.
TPP1 OB-fold domain required for association with human

telomerase. We chose residues that were solvent exposed

based on the TPP1 OB-fold crystal structure, including those

that were conserved in mammals, present in loop regions

connecting b strands, and near the analogous Est3-yeast telo-

merase association site (Figure S4). Using the competitive

sequestration assay described above, we tested each TPP1-

OB variant for its ability to inhibit telomerase localization to

telomeres and to sequester telomerase within Cajal bodies

(Figure S5).

Many mutations in TPP1-OB had no effect on the efficiency

of mCherry-OB in blocking localization of GFP-TERT to telo-

meres (Figures 4D and S5), indicating that these residues are

dispensable for TPP1-OB association with TERT. These in-

cluded double mutants R159A;E160A and D163A;T164A, both

of which reside in a short a helix (helix ab) (Figures 4D and

S5A–S5D). Mutation of a conserved serine in loop LA1 (S111A)

similarly had no effect on the activity of mCherry-OB (Figures

4D and S5A–S5D). In marked contrast, a double charge swap

mutation—D166R;E168R, hereafter referred to as OB-RR—in

conserved residues in loop L34 completely eliminated the activity

of mCherry-OB (Figures 4A and 4C). mCherry-OB-RR was ex-

pressed at similar levels compared to wild-type mCherry-OB

but failed to inhibit localization of GFP-TERT to telomeres and

as a result was not detected in Cajal bodies (Figures 4B and

4C, bottom row). Deconvolution of this double mutant revealed

that E168R was more severely impaired in its ability to sequester

telomerase away from telomeres than D166R (Figures 4C and

S5A–S5D), suggesting that the inactivity of the OB-RR mutant

is largely due to mutation of E168. Introduction of K170A at

a nearby residue in the same loop caused a modest reduction

in the activity of mCherry-OB in this assay (Figures 4A, 4D,

and S5A–S5D). Introduction of the RR mutations into full-length

TPP1 revealed that both wild-type mCherry-TPP1 and mCherry-

TPP1-RR localized to telomeres in HeLa cells. Although wild-

type mCherry-TPP1 did not interfere with the localization of

GFP-TERT at telomeres, mCherry-TPP1-RR effectively blocked

the ability of GFP-TERT to localize to telomeres, resulting in

localization of GFP-TERT to Cajal bodies (Figures 4E and 4F).

In this case, mCherry-TPP1-RR inhibited telomerase recruit-

ment to telomeres, presumably by competing away endogenous

TPP1 from the shelterin complex and replacing it with a mutant

defective in the ability to associate with telomerase. Taken

together, these data show that residues D166, E168, and

K170 are required for telomerase association and may define

a critical surface required for interaction between TPP1 and

telomerase.

Telomerase-TPP1 OB-Fold Association Is Essential
for Telomere Maintenance
To test the functional significance of the telomerase-TPP1 OB

interaction in telomere length maintenance, we tested whether

isolated TPP1 OB-fold domain could prevent telomerase from

elongating telomeres. We used retroviral transduction to ex-

press wild-type TPP1 OB-fold domain, TPP1-OB-RR, or GFP

as a negative control in HTC75 cells, a telomerase-positive fibro-

sarcoma cell line widely used to study telomere maintenance

(Smogorzewska et al., 2000). After selection, each culture was
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Figure 4. Loop Residues in TPP1-OB Are Required for Telomerase Recruitment

(A) Structural representation of TPP1-OB domain (PDB 2i46). Residues required for telomerase interaction shown in red.

(B) Western blot for TPP1 variants transfected in HeLa cells, assayed by using anti-HA antibody.

(C) Competitive sequestration assay in HeLa cells transfected with GFP-TERT and TERC together with mCherry-tagged TPP1-OB, TPP1-OB-D166RE168R

(OB-RR), or empty vector. Epifluorescence for GFP-TERT (green) and mCherry-OB (red).

(D) Quantification of colocalization between mCherry-TPP1-OB mutants and GFP-TERT from assay in (C). More than 100 nuclei scored. p value, Fisher’s

exact test.

(E) Competitive sequestration assay in HeLa cells transfected with GFP-TERT, TERC, and mCherry-tagged full-length TPP1 or TPP1-D166RE168R (TPP1-RR).

Epifluorescence for GFP-TERT (green) and mCherry-OB (red).

(F) Quantification of (E). More than 100 nuclei scored. p value, Fisher’s exact test.

See also Figures S4 and S5.
transduced either with an empty vector or with a retrovirus ex-

pressing Myc-POT1(DOB), which is a POT1 variant that lacks

the N-terminal OB-fold domain. Myc-POT1(DOB) causes rapid

telomere elongation by telomerase, presumably by relieving

inherent negative regulation at the chromosome terminus

(Loayza and De Lange, 2003). As expected, telomeres signifi-

cantly elongated in cells expressing GFP and Myc-Pot1(DOB)

through successive population doublings (Figure 5A, lane 1
versus 4 and 7 versus 10). In comparison, telomere elongation

by Myc-Pot1(DOB) was abrogated by prior expression of wild-

type TPP1-OB (Figure 5A, lane 2 versus 5 and 8 versus 11).

This inhibitory effect of TPP1-OB was dependent on its associa-

tion with telomerase because expression of TPP1-OB-RR ex-

erted no inhibitory effect on telomere elongation by telomerase

in Myc-Pot1(DOB) cells. Furthermore, telomeres in cells ex-

pressing wild-type TPP1-OB (without Myc-POT1(DOB)) showed
Cell 150, 481–494, August 3, 2012 ª2012 Elsevier Inc. 487
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Figure 5. TPP1-OB Inhibits Telomere Length Maintenance by Telomerase and Blocks Endogenous Telomerase Recruitment

(A) Telomere lengths by Southern blot in HTC75 cells transduced first with retroviruses expressing FLAG-GFP, FLAG-OB-WT, or FLAG-OB-RR, followed by

transduction with either empty vector or Myc-POT1(DOB). Genomic DNA harvested at population doubling (PD) 6 and 12 for Southern.

(B) Western blots for expression of OB variants and Myc-POT1(DOB) in cells used in (A).

(C) TRAP assays for telomerase activity in cells used in (A).

(D) RNA FISH for endogenous TERC colocalization (red) with TRF2 (green) by immunofluorescence using anti-TRF2 antibody in HeLa cells transduced with

retroviruses expressing GFP, TPP1-OB, or TPP1-OB-RR. Arrows, TERC foci colocalizing with telomeres.

(E) Quantification of TERC and TRF2 colocalization in (D). More than 200 nuclei scored. p value, Fisher’s exact test.

See also Figure S6.
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rapid telomere shortening as compared to GFP-expressing cells

in which telomere lengths were maintained with passage. After

12 population doublings, the mean telomere length in cells

expressing TPP1-OB was 1.5 kb shorter than cells expressing

GFP (Figure 5A, lane 7 versus 8). In contrast, TPP1-OB-RR

showed no effect on telomere maintenance (Figure 5A, lane 1

versus 3 and 7 versus 9), despite similar expression compared

to wild-type TPP1-OB protein (Figure 5B). The strong inhibitory

effect of TPP1-OB was not due to a reduction in telomerase

catalytic function; catalytic assays performed on extracts from

these cells showed no inhibition of enzymatic activity by expres-

sion of TPP1-OB (Figure 5C). In addition, TPP1-OB did not

interfere with cell growth (Figures S6A and S6B) or telomere

protection, as there was no increase in DNA damage foci at

telomeres (Figures S6C and S6D) when the telomere lengths

were assayed. These findings demonstrate that TPP1 OB-fold

inhibits telomere length maintenance by telomerase both at the

basal level and in the context of rapid telomere elongation

induced by POT1(DOB).

To understand how expression of TPP1-OB variants affected

recruitment of endogenous telomerase to telomeres, we per-

formed RNA FISH for endogenous TERC in HeLa cells stably

transduced with TPP1-OB or TPP1-RR. The frequency of cells

harboring TERC foci that overlapped with TRF2 was significantly

diminished by overexpression of TPP1-OB, but not by TPP1-OB-

RR (Figures 5D, 5E, and S6E). These findings corroborate our

observations fromour competitive sequestration assay (Figure 4)

at the endogenous level and provide functional evidence that

association between the OB-fold domain of TPP1 and telome-

rase is essential for telomerase to be efficiently recruited to

telomeres and to synthesize telomere repeats.

IPF Mutations in TERT Block Recruitment and Show
Diminished Association with TPP1 OB-Fold
Based on these findings indicating a functionally important

association between TPP1 and telomerase, we hypothesized

that specific amino acid residues within TERT are required for

its recruitment to telomeres. To address this question, we

carried out domain-mapping studies on TERT by generating

a panel of TERT deletion mutants (Figure S7A). HA-tagged

TERT mutants and TERC were coexpressed in HeLa cells

and assayed for their localization by triple immunofluorescence

staining for HA-TERT, TRF2, and coilin. We found three distinct

classes of localization patterns for these deletion mutants

(Figure S7A). Whereas wild-type TERT showed robust colocal-

ization with TRF2, the N-terminal truncations of TERT were

detected in a nucleoplasmic pattern (Figure 6B; DTEN).

C-terminal deletions within TERT abrogated telomere localiza-

tion but instead showed strong accumulation in coilin-positive

Cajal bodies (Figure 6B; DCTE). Based on these results, we

conclude that Cajal body localization and telomere association

are each governed by distinct structural domains of TERT. The

N-terminus of TERT, including the TEN and TRBD domains, is

essential for Cajal body localization, whereas the CTE is

required for recruitment to telomeres.

Upon establishing the roles of the TEN and CTE domains in

telomerase trafficking, we examined a panel of disease-associ-

ated or engineered TERT point mutants in the TEN and CTE
domains (Figure 6A). Four mutants—G100V, V144M, E1117X,

and F1127NAA (C-DAT)—were found to be defective in localizing

to telomeres when coexpressed with TERC (Figures 6C and 6D)

and strongly accumulated in Cajal bodies. This pattern was

reminiscent of the relocalization of TERT into Cajal bodies

upon depletion of TPP1 or upon expression of the OB-fold of

TPP1 (Figures 2 and 4). To determine whether these mutants

failed to be recruited to telomeres because of a defect in associ-

ation with TPP1, we coexpressed each mutant with mCherry-

TPP1-OB. Three of the four mutants—G100V, V144M, and

E1117X—were significantly impaired in capturing mCherry-

TPP1-OB into Cajal bodies, which is consistent with a defect in

association between these mutant TERT proteins and the OB-

fold of TPP1. The C-DAT mutant retained the ability to colocalize

within mCherry-OB in Cajal bodies, although mCherry fluores-

cence intensity was reduced in Cajal bodies as compared to

wild-type TERT, which is evidence for weaker association with

mCherry-OB (Figures 6E and 6F). These data indicate that the

mutations in the TEN and CTE domains of TERT block associa-

tion with TPP1 OB-fold, and this defect explains their inability to

be recruited to telomeres.

Importantly, the ability of the examined TERT variants to

localize to telomeres was unrelated to their catalytic activity

measured in vitro (Figure S7B). The V144M and E1117fsX

mutants derive from patients with idiopathic pulmonary fibrosis

(Yamaguchi et al., 2005; Armanios et al., 2007; Tsakiri et al.,

2007). Although E1117fsX has diminished catalytic activity,

V144M retained wild-type activity in in vitro assays (Tsakiri

et al., 2007; Tsang et al., 2012). Our results suggest that defec-

tive trafficking from Cajal bodies to telomeres underlies the

telomerase dysfunction in patients with the V144M mutation.

G100V is an engineered mutation in the TEN domain and has

been shown to be essential for the enhancement of telomerase

processivity mediated by recombinant TPP1-POT1 (Zaug

et al., 2010). Thus, an impaired interaction between TERT-

G100V and TPP1-OB-fold may explain both the absence of

processivity enhancement in this mutant and the defect in telo-

merase recruitment. F1127NAA (C-DAT) is an engineered

mutation that ‘‘dissociates activities of telomerase’’ (DAT) by

preserving enzymatic function while interfering with the ability

of telomerase to immortalize primary human cells (Banik et al.,

2002; Armbruster et al., 2003). It is worth noting that all the

recruitment-disrupting mutations lie within or close to the previ-

ously characterized DAT domains in the TEN and CTE domains,

raising the possibility that the DAT domains represent structural

motifs directly involved in recruitment. Taken together, these

data show that specific residues within TERT govern recruitment

to telomeres via interaction with the TPP1-OB-fold domain and

that this recruitment step is impaired in a subset of patients

with pulmonary fibrosis.

DISCUSSION

A Stepwise Model for Telomerase Recruitment
to Telomeres
Recruitment of large protein complexes to their sites of action on

chromatin is a critical rate-limiting step for many biological

processes, such as the formation of kinetochores at
Cell 150, 481–494, August 3, 2012 ª2012 Elsevier Inc. 489
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Figure 6. Subset of TERT Mutations in IPF Arrest Telomerase in Cajal Bodies due to Impaired Interaction with TPP1-OB

(A) Summary of TERT functional domains adapted from Podlevsky and Chen (2012). Point mutations in the TEN and CTE domains indicated; recruitment-

defective mutants V144M, G100V, E1117X, and C-DAT highlighted in red.

(B) Localization of HA-tagged TERT deletion variants in HeLa cells also transfected with TERC. Immunofluorescence using antibodies against HA (red), TRF2

(green), and coilin (white).

(C) Immunofluorescence for HA-TERT (red), TRF2 (green), and coilin (white) in HeLa cells transfectedwith TERT point mutants in the TEN andCTE domains, along

with TERC.

(D) Quantification TERT mutant colocalization with telomeres from (C). At least 100 nuclei scored. Error bars represent SEM. p < 0.0001 for TERT mutants in red,

by two-tailed Student’s t test.
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Figure 7. A Stepwise Model for Telomerase

Recruitment to Telomeres

Telomerase accumulates in Cajal bodies, which

is a step that is disrupted in patients with

mutations in TCAB1 (1). Association between

the TPP1 OB-fold and the TEN and CTE domains

of TERT (colored red) mediates recruitment

to telomeres, which is a step that is dependent

on specific OB-fold loop residues and sequences

in TERT mutated in some IPF patients (2). Once

recruited to telomeres, TPP1-telomerase asso-

ciation may support processive elongation of

telomeres (3).
centromeres and the origin-of-replication complexes on DNA.

Similarly, telomerase must be recruited to telomeric chromatin

to synthesize telomere repeats, although this process has

been difficult to dissect in human cells. In this study, we identified

an obligatory interaction between the telomerase RNP and the

OB-fold domain of the shelterin component TPP1 that recruits

telomerase from a Cajal body reservoir to telomeric chromatin.

Blocking the telomerase-TPP1 OB-fold interaction inhibited

telomerase recruitment to telomeres and abrogated telomere

synthesis by telomerase in vivo.

Our findings suggest a stepwise mechanism for recruitment of

the telomerase RNP to telomeres (Figure 7). In the first step,

telomerase localizes to Cajal bodies by virtue of the interaction

between the TERC CAB-box sequence and the Cajal body-

enriched telomerase holoenzyme component TCAB1 (Figure 7,

step 1, top). The importance of the Cajal body is suggested by

observations showing that mislocalization of telomerase to the

nucleolus, either by TCAB1 depletion (Figure 2) or by TERC

CAB-box mutations, inhibits telomerase recruitment and telo-

mere synthesis by telomerase (Cristofari et al., 2007; Venteicher

et al., 2009; Zhong et al., 2011). Enhanced loading of telomerase

on telomeres in S-T cells leads to formation of neo-Cajal bodies

at telomeres, and furthermore, depletion of the Cajal body
(E) Competitive sequestration assay in HeLa cells transfected with FLAG-TERTmutants and TERC together wi

anti-FLAG antibody (green) and anti-coilin antibody (white) together with mCherry epifluorescence to detect

(F) Quantification of (E). At least 100 nuclei scored for colocalization of mCherry-OB and FLAG-TERT. p valu

See also Figure S7.
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protein coilin can reduce telomerase

foci at telomeres (Figure 2) (Stern et al.,

2012). Together, these findings establish

the Cajal body as an important reservoir

for telomerase, but it remains uncertain

precisely what function is served by Cajal

bodies and whether the bodies them-

selves are required for telomere

synthesis by telomerase.

TPP1 OB-Fold: A Docking Platform
for TelomeraseRecruitment and an
Enzymatic Cofactor for
Processivity
In the second step (Figure 7, step 2), telo-

merase RNP is recruited to telomeres via
an obligatory ‘‘docking’’ step, whereby the TERT TEN and CTE

domains interact with the OB-fold domain of TPP1 (Figure 7,

step 2). The importance of this interaction is supported by

a number of observations. First, removal of TPP1 from telomeres

by using siRNAs against TPP1 or TIN2 abrogated the ability of

overexpressed telomerase to localize to telomeres and led to

strong accumulation in Cajal bodies (Figure 2) (Abreu et al.,

2010). Second, tethered TPP1 OB-fold alone was able to recruit

telomerase to a heterologous nontelomeric locus (Figure 3).

Third, the expression of TPP1 OB-fold competitively seques-

tered overexpressed telomerase away from telomeres into Cajal

bodies. Furthermore, the TPP1-OB domain itself was captured

by telomerase in this context, localizing in Cajal bodies (Figure 4).

Fourth, mutations in TPP1 OB-fold, such as OB-RR, or TERT

mutations in the TEN and CTE domain (Figure 6) abrogated

this interaction and inhibited telomerase recruitment, again

arresting telomerase in its prerecruitment, Cajal-body-localized

state.

In the third step (Figure 7, step 3), telomerase engages with te-

lomeric DNA substrates and processively synthesizes telomeric

repeats. Previously, the TPP1-POT1 heterodimer has been

shown to aid telomerase catalysis by enhancing its processivity

on oligonucleotide substrates in vitro. A single amino acid
th mCherry-TPP1-OB. Immunofluorescence using

mCherry-TPP1-OB (red).

es, Fisher’s exact test.
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mutation in TERT(G100V) abrogated the processivity enhance-

ment by TPP1-POT1 (Zaug et al., 2010). We found that the

same mutation severely impairs TERT-TPP1 OB interaction

and telomerase recruitment. Based on these observations, we

postulate that the processive elongation of telomeric DNA and

telomerase recruitment rely on the same TERT TEN-CTE:

TPP1-OB interaction, which persists after the docking step and

throughout the entire duration of telomerase catalysis (Figure 7,

bottom). In other words, TERT TEN-CTE: TPP1-OB interaction

not only recruits telomerase to telomeres, but also allows telo-

merase to be tethered to the shelterin-bound telomeric DNA

substrate, preventing premature release of the telomere

substrate and/or aiding telomerase translocation on telomeric

tracts (Latrick and Cech, 2010). It is possible that the residues

that we have identified in the TPP1 OB-fold—D166, E168 and

K170—may contribute to the actual interface at which TPP1

and telomerase interact. These residues in the L34 loop are

solvent exposed, and form a ridge along a groove running across

the TPP1 OB-fold structure. The development of small mole-

cules targeting this region of theOB-fold could act as telomerase

inhibitors to block telomere synthesis in an analogous fashion to

the effects of overexpressed OB-fold that we describe here.

Dual Function of the Shelterin Complex in Telomerase
Regulation
The shelterin complex has consistently been found to inhibit

telomerase in its ability to lengthen telomeres. This role of the

shelterin complex was supported by both loss-of-function and

gain-of-function genetic experiments, which demonstrated that

telomeres lengthen upon shRNA-mediated depletion of the

shelterin components TIN2, POT1, and TPP1 (Loayza and De

Lange, 2003; Houghtaling et al., 2004; Liu et al., 2004; Ye and

de Lange, 2004; Ye et al., 2004), whereas overexpression of

TRF1 and TRF2 causes telomere shortening (Smogorzewska

et al., 2000). However, it has been challenging to study the func-

tion of a single shelterin protein using these approaches due to

the interdependence among these proteins at telomeres (Rai

et al., 2011; Takai et al., 2011). Furthermore, disrupting the stoi-

chiometry of the shelterin complex causes a DNA damage

response at telomeres, which could affect telomerase recruit-

ment. By using a minimal TPP1 OB-fold domain to recruit

TERT to a heterologous chromatin locus and by specifically inter-

fering with telomerase-shelterin interaction through expression

of the isolated OB-fold domain, we were able to separate the

capping function of TPP1 from its interaction with telomerase.

Our results are consistent with a model in which the TPP1-

POT1 module serves a dual function at telomeres, restricting

telomerase access to the chromosome terminus through POT1

in order to prevent unscheduled telomere elongation, while

recruiting telomerase to telomeres via the TPP1 OB-fold. POT1

binds single-stranded telomeric DNA with high affinity and is

a potent inhibitor of telomere extension both in vivo and in vitro

(Loayza and De Lange, 2003; Lei et al., 2004; Kelleher et al.,

2005). Once telomerase has been recruited to telomeres, it

may compete with POT1 for the terminal single-stranded

overhang for productive elongation. Telomere lengthening

upon the depletion of TIN2 or TPP1 may occur because of

concomitant decrease in POT1 occupancy at telomeres,
492 Cell 150, 481–494, August 3, 2012 ª2012 Elsevier Inc.
favoring telomerase-telomere binding following recruitment by

residual TPP1. Alternatively, additional contacts between telo-

merase and shelterin components could facilitate recruitment

in the context of depletion of TIN2 or TPP1.

Telomerase Trafficking and Disease
Germline mutations in telomerase or in TIN2 result in very short

telomeres, which in turn precipitate several disease states,

including dyskeratosis congenita, aplastic anemia, cancer, liver

fibrosis, and pulmonary fibrosis (Calado and Young, 2009).

Certain telomerase mutations can cause disease without an

apparent change in telomerase enzymatic activity. Mutations

in TCAB1 cause dyskeratosis congenita by disrupting telome-

rase trafficking to the Cajal body while leaving telomerase

enzymatic activity intact (Batista et al., 2011; Zhong et al.,

2011). Our results with the TERT mutations V144M and

E1116fsX from idiopathic pulmonary fibrosis (IPF) patients

reveal that disease mutations can arrest telomerase trafficking

in Cajal bodies, rendering telomerase unable to be recruited to

telomeres. These findings expand our understanding of the

contribution of telomerase trafficking defects in disease;

TCAB1 mutations can force mislocalization of telomerase to

nucleoli, whereas certain TERT mutations can prevent recruit-

ment and trap telomerase in Cajal bodies. Telomerase activation

confers replicative immortalization to primary human cells and

is a hallmark of cancer (Hanahan and Weinberg, 2011). Our

data demonstrate that telomerase-TPP1 OB interaction is rate

limiting for telomere length maintenance in human cancer cells.

These findings highlight a potential vulnerability in the telome-

rase pathway that could be exploited through the development

of targeted therapeutics.

EXPERIMENTAL PROCEDURES

Small-Scale Cell Culture, cDNA and siRNA Transfections,

and Retroviral Transductions

HeLa, 293T, HTC75 (a gift from T. de Lange), and U2OS2-6-3 cells (a gift

from S. Janicki) were grown in Dulbecco’s modified Eagle’s medium

(DMEM)/10% fetal bovine serum/1% penicillin-streptomycin. Lipofectamine

2000 (Life Technologies) was used for all cDNA transfection experiments

with and without siRNAs. For transfection with siRNA alone, Dharmafect

4 (Dharmacon) was used. All siRNAs were purchased from Dharmacon as

siGENOME pools. Cells were reseeded 24 hr posttransfection and were

assayed 24–48 hr later. For transient overexpression, TERT and TPP1 coding

sequences were cloned into pCDNA3.1 (Invitrogen) with indicated amino

terminal tags. To generate cells by retroviral gene transfer, 293T cells were first

transfected with RSV Gag-pol and VSV-g packaging vectors, together with

retroviral plasmids. Viral supernatant was collected 24, 48, and 72 hr post-

transfection and concentrated by using Retro-X concentrator (Clontech).

Infected cells were selected in antibiotic-containing media up to 1 week. All

TERT and TPP1 point mutants were generated by using site-directed muta-

genesis (QuikChange II, Agilent). See Table S1 for primer sequences.

Immunofluorescence and In Situ Hybridization

All immunofluorescence (IF) was carried out as previously described (Zhong

et al., 2011) on cells seeded on coverslips. RNA FISH was carried out by using

Quasar 570 labeled oligonucleotide probes (Biosearch). See Table S2 for probe

sequences. TelomereDNAFISHwithPNAprobeswas carried out asdescribed

(Kibe et al., 2010). For combined IF andDNA/RNA FISH, IF was carried out first,

and cells were refixed with 1 mM DSP in 13 PBS for 5 min. Images were sub-

sequently acquired with a Leica wide-field fluorescence microscope. LAF AS

Lite suite (Leica) and ImageJ were used for image analyses.



Telomere Repeat Amplification Protocol and Telomere Restriction

Fragment Analysis

Telomere Repeat Amplification Protocol (TRAP) was carried out by using

Trapeze kit according to the manufacturer’s protocol (Milipore) with minor

modifications. Cells were lysed in NP40 buffer (25 mM HEPES-KOH,

400 mM NaCl, 1.5 mM MgCl2, 10% glycerol, 0.5% NP40, and 1 mM DTT

[pH 7.5] supplemented with protease inhibitors). Each reaction was pro-

grammed with 0.5–2 mg of protein lysate. To measure telomere lengths during

extended culture, HTC75 cells were grown in 6-well plates and reseeded every

3days. Harvested cellswere pelleted anddigestedwithProteinaseKat 6mg/ml

overnight. DNAwas extracted by using the standard phenol-chloroform-based

method and digested overnight with HinfI and RsaI before electrophoresis

and Southern blotting with an end-labeled (CCCTAA)4 oligonucleotide probe.
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